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ABSTRACT 

Several models for the analysis of the modulation 

of the ocean surface wave spectrum by a prescribed surface 

current are reviewed.  Both an eigenmode description and 

WKB approximation will be studied in two horizontal 

dimensions.  The results will be exprersed as a modulation 

of the surface wave amplitude power spectrum. 
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1.0  Introduction 

In this paper '• e review several models for analysis 

of the modulation of the ocean surface wave spectrum by a 

prescribed surface current.  A quasi-linear approximation 

will be used.  The free surface waves will be treated in 

the linear approximation and the coupling to the surface 

current will be proportional to the product of the surface 

wave and surface current amplitudes.  Both a modal descrip- 

tion and the WKB approximation will be studied.  The results 

will be expressed as a modulation of the surface wave ampli- 

tude power spectrum. 

The notation of Parts I   and II   will generally 

be followed. 

■nUMMMa ii mi     nart IIIIHIII 
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2.0 Description of tba Problem 

The model system we consider in this paper is that of 

an irrotational, incompressible ocean.  We treat the surface 

in two horizontal dimensions with the undisturbed ocean sur- 

face chosen to be the z=0 plane of a rectangular coordinate 

system with z-axis directed upward.  The depth of the water 

is assumed to be very large compared with all wavelengths 

of interest.  The assumption of irrotational. ty allows us to 

use a velocity potential description of the surface waves 

|(J)(r,t)| and the vertical displacement of the water surface 

from equilibrium is written as :(r,t).  The prescribed surface 

current is assumed to be parallel to the x axis and a super- 

position of modes of the form 

U(r,t) = i /  U cos(KO (2.1) 

K 

where 

^ = x - Cjt (2.2) 

with c  a phase velocity, K representing a set of wave numbers 

and the U a set of amplitudes. 
K 

Ihe linearized equations to determine <t>  and C were 

(3) obtained for one-dimensional waves by Zachariasen   and 

Milder^  and also in Part II.  These can be generalized to 

IM — - 
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two dimensionG; the resulting equations are *"* 

i| ♦ U-V *+ gc= 0, 

|| + U-Vs ;+ 5 Vs-U =(Ds<J, . (2.3) 

Here g is the acceleration of gravity, (J) is the velocity 

potential at the surface, and C is the vertical displacment 

of the surface from the plane z=0. The operator V  is the 

gradient in the (x,y) plane and 

9,-fP,    ■ 

Following the notation of Part I, we write 

M?,t) =5] e^-ekz^_[b( + ) +b(:)*|     (2>4) 
£        /2 k 1 k    -it / 

and for the surface displacement from equilibrium 

(2.5) 

where v, = /g/k, the tr  are expansion amplitudes, ond the 

sum runs over s irface wave number vectors k.  Substitution of 

Eqs. (2.4) and (2.5) into (2.3) leads to the equation for the 

k 

       —^—— 
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• C - -.' r-I kU K 
k -K    -iJUtr k 

x      e      K 

Ml 
r Kx  +    

u,k i (+) 
[kx-K    tt|M|J it-K 

k +K     in^tr kj 
♦ -S  e    K 

U), 

k+Kl 
kx+K       W|M| k+k 

(2.6) 

whare we  have  seen  in Part  II  that the coupling between 

b and b     '     {=b      ]    is very weak and  t^refore  ignored and 

nv 5  KcT  and CJ   =   Vg|ic| 
■K 

(2.7) 

Continuing to follow the notation of Part I, we set 

the eigenmode expansion amplitudes to be of the form 

1+) "i'i)kt     -)■ 
b^' = e      q^ 2 ^ 

and define the  complex ^.-.plitude 

(2.8) 

Z(r,t) Z 
i (k'r-a)kt) 

qük 
-1 (2.9) 

In terms of this complex amplitude we may write the surface 

displacement as, 

C(r,t) = - lm|z(r,t)j 

= I (z(r,t) - 7.*(r,t))   . (2.10) 

- **amm mamm ~-   - 
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Until now our discussion has been concerned with the 

mechanical interaction of waves and the resulting surface 

displacement.  Suppose we shift our focus and determine the 

spectral development induced by the interaction of the sur- 

face current and surface gravity waves.  Let us suppose that 

at a given time t we observe q  to have the value Q  .  A 0 * t 
series of such observations at time intervals long compared 

to correlation times will lead to an ensemble of values for 

the q 's.  We shall assume the different Q 's to be uncorrelated 

so that for an ensemble average denoted by the brackets <...> 

we have the relations, 

<Q > = <Q Q^ >= 0  , 
%• El 

R 1      k    kl 
(2.11) 

We can use these considerations to construct the cor- 

relation function for the surface displacement r, between two 

points separated by a distance x as follows, 

C(x) E <c(r,t) t(r4x,t)> 

«y %{»(<)+p(-^} •i1,2 (2.12) 
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where P(k) is the power spectrum of the complex amplitude Z. 

Using the expression for the surface displacement in terms 

of the complex amplitude, i.e., Eq. (2.10), in Eq. (2.12) 

yields the expression, 

P(k) =  L— /d2x e"ik*x <Z*(r,t) Z(r+x,t)> 
2(2Trr J 

= <|Q,|2>/2k2 , (2.13) 
k 

which is the power spectrum in terms of the measured slope 

variables. 

The corresponding power spectrum of the surface dis- 

placement C is defined by Phillips   as 

H'(ic) = 's [p(k) + P(-k)j  . (2.14) 

The normalization of the functions *(k) and P(k) are such that 

2 f(J) - V P(k) = <;2>   . (2.15) 

            ^_ 
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3.0    Analysis of the Coupling 

In the remainder of  this  paper will assume  that  there 

is  a single nondispersive  internal wave which gives  rise to 

the  surface current.     We wr^te Eq.   (2.1)   as 

U =  i U0 cosKC (3.1) 

where the wavelength of the internal wave (2v/K)« i.e., sur- 

face current, is very much larger than the surface waves of 

interest.  Thus, we have the relation 

k >> K ,  all k of interest . (3.2) 

To simplify our two-dimensional problem we parameter! 

the dependence of the surface wavenumber in the direction 

orthogonal to the current by introducing 

ze 

j-K (3.3) 

into Eq.   (2.6).     With p as  a  fi>ced parameter  in Eq.    (2.6), 

the component of £ parallel  to tnj current U  is written as. 

kx = nK     ,     n =  1,   2,     (3.   4) 

^MM mm*m ■**•■»*■-_- ..,._ ..-..»--...- .■■^■..-J.. ■^^^.. 
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Eq. (3.4) is reasonable because of condition (3.1); i.e., 

we can establish the periodic boundary conditions for the 

surface gravity waves over an arbitrary patch of ocean. 

Implementing Eq. (3.4) allows us to replace the eigen- 

mode amplitudes b(+) by a discrete set of quantities B(n): 

. ( + ) _  -inQt „, , b   = e     B(n) , (3.5) 

where 

ß 5 Kc. (3.6) 

is the frequency of an internal wave of wavenumber k 

and phase velocity c .  Substituting the discrete variables 

defined by Eq. (3.5) into the interaction equation [Eq. (2.6)1 

results in 

i B(n) - En B(n) = f (n) B(n+1) + g(n) B(n-l)    (3.7) 

vhere 
KU 

g(n) ■ « -J- 
n-1 

KU 
f(r) ■ » "I2 

V(n-l)2+(p/K)2 

 n-H 

V(n+l)2+(p/K) 

\n-l   wll.1 f   , 

ln+1   %+l J 

(3.8) 

(3.9) 

mm. mmgmm 
•—— mtii*,,., i ■■ 
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and 

E i M- - afl n   n (3.10) 

with u)  E (D  .  A further transformation on Eq. (3.7) puts n   W 
it into the form, • 

i||.w 

where H is Hermitian.  Indeed, the transformation 

B(n) = Yn 4^ (n) (3.11) 

leads to the equation,  using Eq. (3.7), 

i iMn) - En ^(n) = Vn>n+1 iKn+1) + Vnfn_1 (|;(n-l)  (3.1^) 

where the matrix elements are given by 

Vn,n+1
= f{n) WYn 

and (3.13) 

Vn,n-1 = g(n) Yn-1/Yn 

The matrix V will be symmetric if we choose 

MHBMa MMHMH^^ "■"•■•-- ■     - -— .-^--.-■■^*>-^-^-**-^'—^--'  
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Yn-lAn =   (f(n-l)/g{n)) (3.14) 

so that 

Vn+i ■ /nrrrTTHTTT 
and (3.15) 

Vn-1 " ^^-l)   9(n' 

Eq. (3.12) now has the form of a "Schrödinger equation", 

I ||- (K + V)i (3.16) 

where 

Knn' E  6  , n nn1 

Eigensolutions to Eq. (3.16) are 

t , %    ~iE t , , . ^(n) = e     tyx (n)  , (3.17) 

where X labels the eigenfunctions (►• and eigenfrequencies 

EX.  Substitution of (3.17) into (3.16) leads to the 

equation 

(EA.En) n(n) . vn>n+1 ^(n^l) ♦ Vnfn_1 ^(n-1) .  (3.18) 

Because of physical limitations on our model, as well as 

mathematical limitations on our equations, it is useful to 

10 
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truncate the set of Eq. (3.18) at some maximum value of n, 

sav n   .  We suppose that n   is chosen sufficiently large 1     max       cc max 

that for time intervals of interest this truncation does not 

affect our conclusions.  Convenient boundary conditions are 

to be imposed on the iK , such as 

*% (n   ) = iK (n   ) = 0 , (3.19) ^X  mm   v\     max 

where n   is an assumed minimum value of n. mm 

The eigenfunctions iK (n) are supposed to be so chosen 

that they satisfy the ortho-normality relations 

I 
n 

I 
4JX (n) (^'(n) = <5X x, 

n(n) Vn,) = 6n,n' 

(3.20) 

To discuss the solutions of Eq. (3.16) several para- 

meter regimes must be recognized.  There is, first, the 

condition of "resonance", defined by the relation 

»I. n 
3n = K Cx », - «x) - (3.21) 

where c  = (g/k) V2 is the group velocity of the surface waves, 
y 

The condition (3.21) determines a value of k  , say k = NK, 

at which resonance occurs.  Condition (3.2) implies that 

11 
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N >> 1, so we may conveniently take N to be an integer. 

Eq. (3.21) can be rewritten in the inre convenient form 

CI = cg cose (3.22) 

where 

cos9 = NK/[p2 + N2K2 ]   ; (3.23) 

tha1- is, 0 is the angle between the surface current and k. 

For values of the 3Ui "ace wa/enumbers near resonance, i.e., 

n * N, vve may express the diagonal matrix element in Eq. (3.16) 

by the expansion about n = N 

9E 
E  ■ n = ^ + (n-N) 5H 

n 
2 

(n-N)2 3 En 

n=N 2! 
3n- n=M 

Using Eq. (3.22), we may re-write this as 

Er ft» EM - a(n-N)  + n   N 

where a is 

Kc 

M 

(3.24a) 

(3.24b) 

12 
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From the form of a above, we anticipate that anomalous 

resonance, effects will occur for 

or 

cos 6 

6 = 35' 

2 
3 

(3.25) 

We shall see that for 9 < 35° modes with n near N tend to 

be "trapped" in this neighborhood, whereas when 9 > 35°, 

modes originally near N tend to spread indefinitely away. 

When we are interested in mode numbers n near n = M, 

we can use Eqs.(3.14) and (3.15) to write 

'U 10 
V ,   =  V     .        -  I-S-]   /HTKHT n,n±l n±l,n       \   2 b ^)] (3.26) 

and 

^n  =   (M/n)*5  expUn-M)   (| cos29 + l)/(2M)     1  +
0(-T)| ,      (3.27) 

where we have specified that y^ =  1. 

When the cuupling V is sufficiently weak, we have the 

first order perturbation solution to Eq. (3.18): 

Vn> ■ 6Xn + ^[5X,n+l 
+ 6A,n-l] 

E  = E, (3.28) 

13 
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We anticipate that this will be a useful approximate 

solution when 

A,A + 1 
EX+1~EA 

<< 1 (3.29) 

This condition is most stringent at A = N, where we intro- 

duce the parameter 

V 

EN+l"EN 
2Uo NVFCJ (3 cos

20-2)] (3.30) 

When S and S, (all A) are sufficiently small, we can 

use perturbation theory.  When S, is not small and when A is 

not near a resonant mode, the WKB method is probably the 

simplest to discuss the surface wave modulation.  The WKB 

method fails near resonance, so for S, , large special tech- 

niques are required. 

For convenient reference, in Fig. (1) we show IE ^-.-E I n+i  n 

as a function of (n-N) for the case that 0=0 and that 

c  = 1 m/sec 

-2  -1 
K = 10  m 1 

N = 250 cos6 

k = 2.5 cos 6 

14 
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-60 

Figure 1.  The difference in frequency between adjacent modes 

is given by the solid curve.  The dashed curve shows 

the frequency shift from resonance. 

15 
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The quantity (E -E ) is also shown in Fig. (1) for these 

same parameters. 

To discuss the resonant strong coupling (S >> 1) 

solution, we consider mode numbers near n = M «s N and define 

an integer v  as most closely approximating the relation 

v  = /S  . o 
(3.31} 

For n-M * v  we set E  = Ew and 1   ' —  o        n   M 

V   ^ , = V  = U  KM/2 n,n+l—  o   o 
(3.22) 

in Eq. (3.18), which becomes simply 

^x (n) -Iff *A(n+l) + ^A (n-1)]  , 

where 

(3.33) 

ex s W-V/^o' (3.34) 

The boundary conditcns (3.19) are now taken as 

*X(M * ^ = 0 (3.35) 

This choice of boundary condition wil] not limit the validity 

of our results for initial modes having n-values well within 

16 
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the  interval M-v     <   n <   M+v     ard  times  short enough that o        o 

mod^s are not excited near n = (N±v ) or (M±u ). 0 O 
The  eigenfunctions  of Eqs.    (3. 33)-(."'. 35)   are  then 

Vn) = vlH ; n^_l_,X(n  .  M +  vj]    , 

e,   = cos ^xl ' 
n  = M  -  v     +   .1.,   ...,   M +  v     -  1   , 

A   ■   1,   2,   ...   2v   -1   . (3.36) 

Equation (3.33) can be generalized if we use (3.16) 

in (3.18), but continue to set E = E...  The resulting 
n   M ■ 

equation is 

(EX-EM) ii'A (n) = l-|- /n [/H+T ^A (r.+l) + ^=1^^(11-1)]  . 

If we define 

4>A(s) = r.- /n ty^ (n) , 

n 

there results the equation 

(3.37) 

wx h = dE [(l+s
2) h]     . (3.38) 

17 
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where 

VX   1   2(E^EM)/(UoK)    . 

On  integrating   (3.38),   we obtain 

<t>x(s) = j- explv^ tan  (s)j  , 

(3.39) 

(3.40) 

where C, is a constant. 

(7) Following Rosenbluth   , we can give a somewhat 

more elaborate analysis near resonance by treating n as a 

continuous variable and using the approximation (3.24) for 

S .  Using the approximation (3.22), we set M = N and obtain 

E  " EN - 2V o + cx(n-N)
2 

1 fU (n) 
„ {n)a v    i__  .  (3.41) 

dn 

We now have V  = U  KN/2, since we have taker M = N.  In 
d^. 

dn /N deriving Eq. (3.41) we have neglec'-.ed a term of order 

compared with iK (n) and have neglected derivatives of higher 

order than the second. 

Equation (3.41) is the "harmonic osuillator" equation 

with "spring constant" a.  For cos9 > l-jj  [Eq. (3.24)J a 

is positive and the "restoring force" limits the spreading of 

modes.  For cosö < (jj  the force is "anti-restoring" and 

indefinite spreading in mode-space occurs. 

18 
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If we define the quantities, 

v = (n-N)^' 

1- (EX - V^O*"1 /S (3.42) 

and   fx(v) = #x<nJ 

v.hen Eq.    (3.41)  can be written  as 

2 
d^ 

dv 
| +   (Ax   -  v2)^   =   0     . (3.43) 

This has  the  solutions, 

Ax  =  2X  +  1   f A  =  0,   1,   2,   .. 

f^Cv)   =     S3*   2X   X!   /?j        Hx(v)   exp[-v2/2] (3.44) 

$x(») 

where H, is the Hermite polynomial 

Vv' *rk j 2vz-z       dz (3.45) 

19 
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and the contour of integration is a circle about z = 

The normalization of Eq. (3.44)  is so chosen that 

(8) 

/ 

dn ^ en) \l)x , (n) = 6^ 

and the eigenvalues of E are of the form 

EX
 
= EN +  Vo (2 " S'li)   ~  AÖa) (3.46) 

kliere 

-H   rcT uo .. „.2. \-l~Z2.  (3 cos^e - 2) r 6ui   = 2Vn  S~*  =   \-l-.9.   (3 cos 9 - 2)   K (3.47) 

The above result is similar to that obtained by Rosenbluth 

for the one dimen.sional impulsively applied internal wave; 

the eigenvalues being identical for 9=0. 

(7) 

20 
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4.0 The Initial Value Condition 

The general form of b^   , Eq. (3.5) is seen to be 

. ( + )    -inJ2t    , /„ i.\ b^ ' = e     Yn ^(n,t) , (4.1) 

where ^(n,t) is a solution to Eq. (3.16).  We suppose that 

at time t = 0, 

(M) 
iHn,o) = 8 n,M /2 Y 

(4.2) 

M 

corresponding to an initial simple wave of mode number M. 

For other timer, ws write 

-iE t  (M) 
iMn,t) = e  M 8  $(nft)  . 

/3 Y. 

(4.3) 

M 

The complex amplitude Z [Eq. (2.9)1 is then 

i(k„x-(JJMt) 

Z  ■ 
M      M n(M)   V   Yn kM ei(n 

■^ Z-.     k YM 
e 

n 

-Mm «D(n,t),      (4.4) 

[2     2 2 n M     K     + p   J      . 

To  first order in M    , 

k
K 

Yn =  1 +      cos29   (n.M)   i 

k  Y M 
4M 
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so (4.4) becomes now cos9 = MK/kM 

Z = 

i(k x-uJMt) 

•   Z o(lt) G
(M) 

M 

^ =  1 - i 
cos 0 3 
4MK   3 

V. n 

-M) KC • (nft) (4.5) 

If we expand in terms of the eigenfunctions of Eq. (3.18) 

and use (4.2), we obtain 

(M) 
iMn,t) ■ 

/2 M 
I-- iE^t ^x(n) iJ>x(M) (4.6) 

Evaluation of (4.5) when we can use the perturbation 

solution (3.28) is straightforward.  There results 

|U KM\ 

G
(M)
S i - -Sr i ♦ i a ♦ i oo.2e)] e1« 

M+l  M    / /p   _p x I 1 " e J / (EM.n 
L
M 

U KM) 1 _  2Q, -iU 
2     M1 " Ä (1 + ICOS e))e 

(EM-rEM) .[l-e-1^-^^]/ 
On expanding Eq. (4.7) in t near t = 0, we obtain 

(4.7) 

22 
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G(M)| SRe (G
(H 

(Ü KMt 
1 + |[-J cos 9)/M sin(KC) 

fU KMt2\ 32EM 

"4  ZJ~ COS{U)      ' '    an 
(4.8) 

For 9=0 and M = N, this agrees with the results of 

(3) 
Zachariasen   when an error in his work is corrected. 

To obtain a more accurate description near resonance, 

we write (K + V) in Eq. (3.16) in the form 

K + V = Ho + H  ' 

V = EM ^^ + Vo ["H"-^ + iMn-1)]  , 

H% = (En-EM) ^(n) + V^n+1 ^(n+1) + vj^^ ^(n-1) ,  (4.9) 

where 

Vn,nnSVo (n-Mt^/N (4.10) 

We next take 

iMn) = ip0(n) + /(n) , (4.11) 

treat H and |  as small, and specify that 
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^ ' «o *0 ■ 
(4.12) 

Substitution of (4.11) into (3.15) then gives the first 

order equation 

i^L-H^H1*0 

to determine jr.  If we set (i (n,t) = 0 at t = 0, the 

boundary condition (1.2) gives us 

(4.13) 

^0 = ■I 
.„A. 0(M) 

e"lE t ^.(n) ^(M) M  
X /2 Y 

(4.14) 

where EX and the ^x are given by Eqs. (3.34) and (3.36) 

The transformation (4.3) then lets as write 

*0( 

Z-i2V te 

e     0 

"  J 
= i J  (-2V_t)  . v    o 

iK (n) ♦, (M) Av"' rX 

) cosa 
cos(va) 

(4.15) 

Here we have set a = -^  A, replaced the sum by an integral, 
2v 

and have defined 

v = (n-M) (4.16) 
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In anticipation of the evaluation of (4.5), we use (4.15) 

and find that 

Y  eivK^ *0(n) = expZ-i^ KMt COS(KU 
)■ 

(4.17) 

If we neglect the term of 0(1/N) and substitute the 

above into (4.5) we see that the effect of the surface 

current is to modulate the phase velocity of the surface 

wave.  This velocity is 

ÜJ 

(:,=   r^   +   U       COSe    COS(KC)     , M        kM O 

a result that could have been deduced  from elementary 

considerations. 

To obtain corrections ofO(l/N)we must integrate 

Eq.    (4.13).     On  setting 

(4.13) 

-iE  t        (M)      , 
^(n)   E e      M    -2  *1(n)     , (4.19) 

we obtain 

.-"■(Mtl)   s| + it/(2N)   +   (E iitrV ir)vc (4.20) 

for small  t.     Evaluation of   (4.5)   finally gives us 
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(M)    s 
V   t     , o 

1  +  -2-  ^ cos  6   sinlKC) 
N       I 

-i2V   t  cos(K^) 
o 

+  V    i o 

2   3    E 
I sin(Kr,)   -   % B cos(KU (4.21) 

This agrees with the Zachariasen expression (4.8) for short 

times.  Since the second term above has been evaluated only 

for small t, we cannot use (4.21) for late times.  From 

Eq. (4.15) we see that the probability that mode number 

n is excited is proportional to [jy (2V0t)]
2.  Thus, when 

t Mt. 
V 

n  o 
I vT 

the neglect of iM^Ej   in Eq. (3.33) is no longer valid and 

we must use the Rosenbluth equation (3.^.1)   to study the 

interaction. 

Before doing this, it is instructive to construct 

the wave amplitude Z using the function :• x   of Eq. (3.40). 

After some simplification, and with the identification that 

s = e     , 

we obtain 

Z.e'^V W e1'^'  1+| ICO s 0-2)/(4M) 

(s d + 1 _ M)  r(Sft),     (4.22) 
ds 
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where 

r(s,t) Q-iE
At  . , 

e     <<)x(s) 
.iEMt 

dv C(v)  v(e-a) 

l+sz 
(4.23) 

Here we have replaced the sum over \  by an integral over 

v = 2(E -EM)/(U M n o (4.24) 

and have set 

6 = tan"1(s) ,  a = itUoK/2 (4.25) 

The coefficient C^ = C(v) is chosen to satisfy the boundary 

condition that 

r(s,o) = s""1 Q(m)/(/lYM)  • 

Using (4.26) W«J obtain 

r(s,t) = tan11"1 (e-a) [l ♦ tan^e-ot)]  Q(M) 

(1 + tan^e)   /2 
'M 

(4.26) 

(4.27) 

On evaluating (4.22) we obtain the envelope function: 
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(M) -a2)   [l  ♦ oU cos26-l)   sin(KU/ 

(«>)] /(l  +  a2  -   2a   sin(Ka) 1  + o     -   2a  sin (4.28) 

Here 

a   S   tanh   (UoKt/2) (4.29) 

For small t, o = V0t/N and Eq. (4.28) is in agreement with 

the linear t-dependent terms of Eq. (4.21).  Eq. (4.28) is 

singular for a = 1, sinK^ ■ 1.  Including the effect of the 

(E -E ) term in (3.18) would remove this sinc,ularity 
n  M 

For a << 1 we can simplify Eq. (4.27) to obtain 

(M) m 
V   t - 

1   +  -^-(l+^cos   0)   si 
N 

n(Krj   exp     -2iVot  COS(KC)j    . (4.29) 

which modifies Eq. (4.21) with a plausible phase factor 

2     2 
correction and, of course, omits the tevm involving 9 EM/9M . 

Returning to the Rosenbluth equation (3.41), the 

general form of  ip(n,t) is 

*( 
.,   \  i6a;Xt 

n,t) = / e Cx :px(n)  , (4.30) 

where we have dropped a phase factor. 

exr \ -i N     O l-^ 

and   6CJ and ^, (n)   are  given  by Eqs.    (3.42)   to   (3.47).     The 
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coefficients C, are 

CA * / dn ^x (n) iMn ,o) (4.31) 

For an initial Gaussian, 

[- |. (n,o)   exp j - (v-V0)
2/2A   Q 

(M) 
(4.32) 

/I Y M 

where v = (M-N)/s' and A is a parameter, (4.31) is easily 

evaluated and we find 

4)(n,t) ■ ext 

exp 

|v£ [l/(l+A') - l/(li-A)]/2J 

r      2     1  Q(M) 
J-(v-v') /(2A')| -y   • 
I   0    J ^yM 

(4.33) 

Here 

A" = 

,    1-A Ä2i6ü)t 
^ " T+Ä e 

fl ♦  Ö L1    l+A 

O    O 
l-A' 

1-A 
1 (4.34) 

A special case of some interest is that of the "non- 

spreading" wave packet, with 

A = 1,  A" = 1 , 

,      2i6u)t 
v = v e 
o   o 

(4.35) 
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In this case 

I*(n,t) 
(M) i2 

/2  Yj, 

The most probable  value  of n  is 

exp[-[n  -  N  -   (M-N)   cos (6a)t) ] 2/S>5 \ 

(4.36) 

n  = N  +   (M-N)   cos(6wt) (4.37) 

Returning to Eq. (4.33), we ru-write this as 

-   (n-M)2/(2ASJ5) ^(n^) -   exp  I       \     n)2/{2kSi)\ 

To satisfy our boundary condition (4.2) we evidently require 

that 

2AS^ << 1 . (4.38) 

Reference to Eq. (4.34) shows then that when 

2i6(jot   , e     = -1 

I A'| is \ery large and we encounter Rosenbluth's "pile-up" 

near OOSK? = 1.  This "pile-up" is greatest at 
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t =« T P " 27ü (4.39) 

Rosenbluth's estimate gives 

G(M)S 1 + RW,    RW , 0 

• 1, R{M) < 0 (4.40) 

R(M) _ sin[2.8 S1/8 sinfKnl  . 
sin(KO        ~1 

On setting M = N in Eq. (4.9), we model G(M) as follows; 

(4.41) 

G(M) Sll + 
(i + l cos2e) 

N sin(KC) 

.^m{^LtV 

+  F"   R(MS exP I -iMKU(C)tl -iMKU(C)t  , t * T    (4.42) 
P 

where 

Tv = (UoKN/2) 
-1 

(4.43) 

and Tp ^ T Tv S  ' an alternate form for Eq. (4.39). 

For applications it will be desirable to re-label 

the envelope function (4.5) with the wave number k = (MK,p), 
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setting 

Gk I G (N) (4.44) 

For times much larger than T  , phase mixing 

substantially reduces the resonant modulation of the 

envelope function.  We note that for t = x  , the variable 

(4.29) is 

a = tanh I | S^/N] , 

which we anticipate to be small compared with unity.  This 

seems to justify the linear approximation in (4.42^. 
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5.0 The VfKB Approximation 

For a mode number M sufficiently far from resonance 

that we can set 

C,EM 
v _ p 2r  5 

the parameter (3.29) is 

SM = 
U M o 

2 (Cj-c cosS) 
(5.1) 

If this is greater than unity the perturbation solution (3.28) 

cannot be used, but the WKB approximation can be.  To develop 

this we re-write Eq. (2.3) in terms of t, C = x - Cjt , and y: 

Here 

H+ v If+« =0.' 

|| + W|^C£.#>4 

V = U - c. 

Next, we write 

33 

(5.2) 

(5.3) 

 - - -■ - ■"■ ■- - - 



mmmfmmimmimmnm*** wmmmmm'mi'cmm''' """.'«' '''^^mmmm^^'m^n^^* 
wmmmmmmmmmmmmmHmmmmmmmmnmmm 

Kny^t)  i/fl«'»«' 
( - Ad ) e" 

5..«,.»«-«//'«•'«• (5.4) 

As usual, we consider q, A and a to be slowly varying 

functions and neglect higher than first derivatives of these 

as well as products of derivatives. 

Treating A' and q' as small, we then work out the relation (9) 

®s*S kA - i ^ A' -1 [^ - m] q'A i (py-ojt) 1/ qdC' 
(5.5) 

where 

2    2  \ 
k E (p^ + qV 

Substitution of Eqs. (5.5) and (5.4) into Eq. (5.2) 

is straightforward and A can be eliminated from the coupled 

[da ^k here ft* s «• i etc., and c : ^j^- 

(w-qV)  - ci)k L -qV)2 - co^],,   + Lk 4c (V + c  cos6)  a' 
g    g '1 

+ a  2 cg V + 2 c' V + 4 cg c^ cose . . .g ™ ^ + 2 c2 sin2e^ ■ ■ 0 

(5.6) 
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The first term, involving no derivatives, gives the usual 

dispersion relation 

uj - q V = a), = /gk (5.7) 

for waves traveling in the positive x-direction.  The terms 

involving derivatives may be integrated to yield 

■yc (V + c cos0) a (5) = const. (5.8) 

To  first order  in U,   Eq.    (5.8)   becomes 

aU) -   a   /I  + x cose   Ic-r   -2c    cos9  +  2 c     sin   e|/(c  -c    cose) 
n Li g g Jig 

a     G(M) 
ao G (5.9) 

where again M labels the mode. 

For sufficiently short wavelengths, we may neglect 

c compared to c_ above.  Then 
9 I 

^=^[1 + Vlf] (5.10) 

The short wavelength will be subject to modulation effect 

due to interaction with long wavelength waves.  Let ü  be 
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we have 

Ü. - V  q  COS^'X-^t) 
I      ' i ^t 

= V Q  G , cos (II «x-.» t) (5.11) 

uprp  v     -  ui   .     and  G,   is   the  envelope  modulation   function 
net c v ^      l/i K 

for the wave i.  Then, in Eq. (5.8) we have 

V -   üv    (G -1) - (Vg-V 
(5.12) 

where 

U  ■ V. Q, cos (K. «x-u, t) (5.13) 
t    *   *i 

Linearizing the relation (5.8) in (G^-l), and again assuming 

dui. 
c    .^_15 << v, , we find 
'g   dk 

a(--) = a o 1 + -T- f1 

,: Q, cosU-x-ui^t) 

(G-J) + 
U cost) 
4'"c. " 4  1 - Qj cos U«X-u»ltl   1      ' "I 

(5. 14 

Here we have added the direct interaction given by Eq. (5.10) 

0 n squaring and performing an ensemble average, 
we 

obtain 
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Here we have neglected higher moments than the second of the 

slope function q  .  If we sum over t and introduce the 

spectral function (2.12), this becomes 

<|a2(U|>    :    <|a;;i>    | Gk | 2 

■ <ia0r> (1 •E V ^'i1  p(~)  Re<Gi-l)  + C'?"' c" 

(5.15) 
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